Weak polar vortex gives hints of what to expect this winter
(ingallswx.com)
from ingalls@lemmy.today to world@lemmy.world on 16 Sep 2024 14:58
https://lemmy.today/post/16299187
from ingalls@lemmy.today to world@lemmy.world on 16 Sep 2024 14:58
https://lemmy.today/post/16299187
#world
threaded - newest
The news source of this post could not be identified. Please check the source yourself. Media Bias Fact Check | bot support
tl;dr: still up in the air, but expect more extreme swings, hooray climate change
I work in the middle atmosphere and several things in this article I disagree with. First off, the polar vortex is a stratospheric and mesospheric jet stream that exists in the winter time. There is no polar vortex in the stratosphere during the summer. Let me repeat that. There is no polar vortex in the northern hemisphere right now! So how are you using it for predictions? Second, the media stole the term “polar vortex” for the Arctic jet stream that exists in the troposphere. Moreover, while correlations have been made (see Baldwin et al., 2021) on the stratospheric impact on the tropospheric weather, the physics aren’t well understood. Assuming you can make predictions on the northern hemisphere winter based on the polar vortex in the stratosphere (which again, doesn’t exist yet because it is summer) months out is unlikely.
Edit: I edited out the argument that the OP may not reputable since they are a meteorologist in Canada.
Edit2: I’ve edited my original post slightly after discussing this concept with the OP.
Not with that attitude!
/s
Thanks for posting, I always find meteorology fascinating and hungrily read up info posted from people like yourself. Please keep doing it, us buffoons that aren’t trained really rely on people like you helping to cut through misinformation when it comes to weather and climate.
Check out this link to see what the actual polar vortex looks like:
earth.nullschool.net/#current/wind/isobaric/10hPa…
This shows wind speed in the middle stratosphere. Since it is still winter in the southern hemisphere, you’ll find the polar vortex there. It is the very strong circular vortex surrounding the South Pole. The northern hemisphere doesn’t have one yet because it is still summer here. Hence my argument against claiming it is “weak” in the article. It simply doesn’t exist yet.
The polar vortex is present already and is slowly deepening. This is clearly evident in 10 and 30 mb height and wind charts.
Meteorological fall begins September 1. As noted, the polar vortex begins developing in August (because of the decreasing sunlight post-solstice) and isn’t full strength until later in the season. At this altitude in the poles (30 km up) thermal lag is less pronounced. Note the American Meteorological Society glossary says “the stratospheric polar vortex exists from fall to spring” (source). It is not just a winter phenomenon.
There is some predictive value in the strength of the polar vortex, especially with regard to the jet stream and sudden stratospheric warming events, but all seasonal forecasts carry uncertainty.
I am a meteorologist in Canada working primarily in the energy industry and have successfully used the polar vortex (among other parameters) in medium- and long-range forecasting several times. This has generally been in the context of deep troughs bringing heavy snow to Western Canada and the U.S. Northwest.
Of course, this being the internet readers can take or leave that claim. It was especially useful in early forecasts regarding an extreme cold weather outbreak in the U.S. Northwest in February-March 2019.
I don’t disagree with its usefulness as a potential predictor once it is formed. I’ve seen the literature on its impact on NAO and the AO. This is particularly true following sudden stratospheric warming events and its correlation with cold air outbreaks in the NH. However claiming that it is “weak” is misleading since it hasn’t formed yet. And to my knowledge, the physical mechanism of the interaction between the stratospheric polar vortex and the tropospheric jet has not been determined. We think it is related to wave reflection from planetary wave and gravity waves during a sudden stratospheric warming event. But if we don’t understand the mechanism, forecast or climate models are incapable of predicting them since that physics will not be included in the models. At this point, using the jet stream in the stratosphere (the unformed vortex) as a predictor for the NH winter will not be better than climatology.
I still am of the opinion that the vortex is in the early stages of forming and will be disrupted over the next several weeks by anamolous high pressure in Alaska/Siberia (possibly shifting eastward into October). The ECMWF op analysis on this website shows the lowering absolute temp and lowering 10 mb heights in the North Pole region over the past two weeks or so. Additionally, the circular stratospheric wind pattern is slowly returning (since about 9/7) and modeled to increase in the coming weeks.
Obviously it is not as developed as it will be later next month or as developed as the South Pole polar vortex currently is. I am curious to see how long the “heat wave” in Siberia/Alaska (and possibly the Canadian Arctic next month) lasts. I just think this pattern in the early stages of development plus La Niña foster conditions for sudden stratospheric warming events later in the season.
Edit to add: Is it a good forecast? I think so but maybe it will be and maybe it won’t, that’s just the nature of things. I stand by it though.
Fair enough. Certainly true on La Niña fostering conditions for SSW events due to the change in planetary wave propagation. I’m not sold on the very, very early development of the polar vortex being a predictor though. That said, if your forecast holds, I’d be interested in revisiting this conversation. I’ve bookmarked your page and will reach out in the spring if you are correct. We can discuss it further.
Even if it’s wrong I’m interested in discussing it further. I want to improve professionally as much as anyone else does and I appreciate the comments you’ve added.
My science falls more on the mesosphere/stratosphere side from space weather effects (top down rather than bottom up). However, SSW events are fascinating phenomena and have profound impacts on potentially all layers of the atmosphere. I’m currently developing (with lots of help) a high-top forecasting model that extends from the surface to the thermosphere. Forecasting SSW events are something we are hoping to improve with this model having a fully resolved mesosphere. I’ll edit my original post as I was hard on your article. I’ll also DM you my email and we can chat further.
This sounds awesome and I look forward to hearing more about it. It seems like this would be a major step forward especially with medium-range forecasts.
This guy weathers.
The view from your office must be amazing.
Lol. After I wrote that I realized how it came off. Bad grammar.